Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
PLoS One ; 19(4): e0299376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630738

RESUMO

AIM OF THE STUDY: To evaluate the therapeutic effect of SYNC in diarrhea irritable bowel syndrome (IBS-D) and explore its underlying mechanism through transcriptomic sequencing (RNA-Seq). MATERIALS AND METHODS: A rat model of IBS-D was constructed to elucidate the effects of SYNC. Abdominal withdrawal reflex (AWR), fecal water content (FWC), and recording body weight were calculated to assess visceral sensitivity in rats. Histopathological changes in the colon and alterations in mast cell (MC) count were determined. Immunohistochemistry was employed to assess mast cell tryptase (MCT) expression in rat colons. Serum levels of corticotropin-releasing Hormone (CRH), interleukin-6 (IL-6), calcitonin gene-related peptide (CGRP), and 5-hydroxytryptamine (5-HT) were quantified using ELISA. RNA-Seq of colon tissue was performed, followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Western blot analysis was conducted to quantify the expression levels of key proteins in the Nr4a3 pathway in the colon and hypothalamus tissues of rats. RESULTS: SYNC alleviated visceral hypersensitivity and mood disorders in rats with IBS-D. Moreover, it was positively correlated with its dosage and the observed effects, such as the enhancement of the colon's mucosal lining condition and reduction in the number and activation of MCs within the model group. SYNC reduced the expression levels of factors related to the brain-gut axis and inflammatory markers in the bloodstream. RNA-Seq analysis indicated that SYNC down-regulated the expression of Nr4a3 and PI3K. These SYNC-targeted genes primarily played roles in immune regulation and inflammatory responses, correlating with the modulation of Nr4a3 and the PI3K/AKT pathway. Western blot analysis further confirmed SYNC's influence on inflammation-related MC activation by downregulating key proteins in the Nr4a3/PI3K pathway. CONCLUSIONS: SYNC inhibited mast cell activation and attenuated visceral hypersensitivity in the colon tissues of IBS-D rats. These effects were mediated by the Nr4a3/PI3K signaling pathway.


Assuntos
Síndrome do Intestino Irritável , Ratos , Animais , Síndrome do Intestino Irritável/patologia , Ratos Sprague-Dawley , Fosfatidilinositol 3-Quinases , Diarreia , Hormônio Liberador da Corticotropina/metabolismo , Proteínas de Ligação a DNA , Proteínas do Tecido Nervoso
2.
J Basic Microbiol ; : e202400008, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548685

RESUMO

Arthrobotrys flagrans, a nematode-eating fungus, is an effective component of animal parasitic nematode biocontrol agents. In the dried formulation, the majority of spores are in an endogenous dormant state. This study focuses on dormant chlamydospore and nondormant chlamydospore of A. flagrans to investigate the differences in cyclic adenosine monophosphate (cAMP) and protein content between the two types of spores. cAMP and soluble proteins were extracted from the nondormant chlamydospore and dormant chlamydospore of two isolates of A. flagrans. The cAMP Direct Immunoassay Kit and Bradford protein concentration assay kit (Coomassie brilliant blue method) were used to detect the cAMP and protein content in two types of spores. Results showed that the content of cAMP in dormant spores of both isolates was significantly higher than that in nondormant spores (p < 0.05). The protein content of dormant spores in DH055 bacteria was significantly higher than that of nondormant spores (p < 0.05). In addition, the protein content of dormant spores of the SDH035 strain was slightly higher than that of nondormant spores, but the difference was not significant (p > 0.05). The results obtained in this study provide evidence for the biochemical mechanism of chlamydospore dormancy or the germination of the nematophagous fungus A. flagrans.

3.
Eur J Med Res ; 29(1): 147, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429734

RESUMO

BACKGROUND: The aim of the study was to investigate whether the expression of CD27-CD38+ in interferon (IFN)-γ+CD4+ T cells stimulated by the specific antigen early secreted antigenic target-6 (ESAT-6)/culture filter protein-10 (CFP-10) could be a potential new therapeutic evaluation indicator for anti-tuberculosis (TB) treatment. METHODS: Newly diagnosed active pulmonary TB patients, latent TB infection (LTBI) and healthy controls were enrolled from January 2021 to December 2021. PTB patients were treated by standard anti-TB regimen 2HREZ/4HR (2 months of isoniazid (H), rifampin (R), ethambutol (E), and pyrazinamide (Z) followed by 4 months of isoniazid (H) and rifampin (R)). The difference of CD27-CD38+ expression in IFN-γ+CD4+ T cells before treatment, 2 months after treatment, and 6 months after treatment were compared. RESULTS: Total 45 PTB patients, 38 LTBI cases and 43 healthy controls were enrolled. The expression of CD27-CD38+ decreased significantly after anti-TB treatment and was comparable with that in LTBI and healthy controls when the 6-month anti-TB treatment course was completed. The decline rate of CD27-CD38+ between 6 months after treatment and baseline was positively correlated with erythrocyte sedimentation rate (r = 0.766, P < 0.0001), C-reactive protein (r = 0.560, P = 0.003) and chest computerized tomography severity score (r = 0.632, P = 0.0005). The area under receiver operator characteristic curve of CD27-CD38+ in distinguish pulmonary TB patients before and after treatment was 0.779. CONCLUSION: The expression of CD27-CD38+ in ESAT-6/CFP-10 stimulated IFN-γ+CD4+T cells can well reflect the changes of the disease before and after anti-TB treatment, which is expected to be a potential new therapeutic evaluation index. Clinical Registry number chiCTR1800019966.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Linfócitos T CD4-Positivos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Isoniazida/metabolismo , Rifampina/metabolismo , Tuberculose/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico
4.
PeerJ ; 12: e16771, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406279

RESUMO

Background: Gastric cancer is a very common gastrointestinal tumor with a high mortality rate. Nintedanib has been shown to significantly reduce tumor cell proliferation and increase apoptosis in gastric cancer cells in vitro. However, its systemic action mechanism on gastric cancer cells remains unclear. A high-throughput proteomic approach should help identify the potential mechanisms and targets of nintedanib on gastric cancer cells. Methods: The effects of nintedanib on the biological behavior of gastric cancer cells were evaluated. A cytotoxic proliferation assay was performed to estimate the half maximal inhibitory concentration (IC50). AGS cells were divided into control, and nintedanib-treated groups (5 µM, 48 h), and differential protein expression was investigated using tandem mass tags (TMT) proteomics. The molecular mechanisms of these differentially expressed proteins and their network interactions were then analyzed using bioinformatics, and potential nintedanib targets were identified. Results: This study identified 845 differentially expressed proteins in the nintedanib-treated group (compared to the control group), comprising 526 up-regulated and 319 down-regulated proteins. Bioinformatics analysis revealed that the differentially expressed proteins were primarily enriched in biological pathways for branched-chain amino acid metabolism, steroid biosynthesis, propionate metabolism, fatty acid metabolism, lysosome, peroxisome, and ferroptosis. Key driver analysis revealed that proteins, such as enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH), isocitrate dehydrogenase 1 (IDH1), acyl-CoA oxidase 1 (ACOX1), acyl-CoA oxidase 2 (ACOX2), acyl-CoA oxidase 3 (ACOX3), and acetyl-CoA acyltransferase 1 (ACAA1) could be linked with nintedanib action. Conclusion: Nintedanib inhibits the proliferation, invasion, and metastasis of gastric cancer cells. The crossover pathways and protein networks predicted by proteomics should provide more detailed molecular information enabling the use of nintedanib against gastric cancer.


Assuntos
Indóis , Neoplasias Gástricas , Humanos , Acil-CoA Oxidase/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Proteômica , Fígado/metabolismo , Enzima Bifuncional do Peroxissomo/metabolismo
5.
J Mol Histol ; 55(2): 201-210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38376631

RESUMO

The activation of toll-like receptor 3 (TLR3) has been reported to attenuate astrocytes injury in central nervous system, but its effect on enteric glial cells (EGCs) remains unknown. Here, we confirmed that the residence of EGCs was regulated by TLR3 agonist (polyinosinic-polycytidylic acid, PIC) or TLR3/dsRNA complex inhibitor in dextran sulfate sodium (DSS)-induced mice. In vitro, TLR3 signaling prevented apoptosis in EGCs and drove the secretion of EGCs-derived glial cell line-derived neurotrophic factor, 15-hydroxyeicosatetraenoic acid and S-nitrosoglutathione. PIC preconditioning enhanced the protective effects of EGCs against the dysfunction of intestinal epithelial barrier and the development of colitis in DSS-induced mice. Interestingly, PIC stimulation also promoted the effects of EGCs on converting macrophages to an M2-like phenotype and regulating the levels of inflammatory cytokines, including IL-1ß, TNF-α and IL-10, in DSS-induced mice. These findings imply that TLR3 signaling in EGCs may provide a potential target for the prevention and treatment of colitis.


Assuntos
Colite , Receptor 3 Toll-Like , Camundongos , Animais , Sulfato de Dextrana/toxicidade , Colite/induzido quimicamente , Neuroglia , Transdução de Sinais , Camundongos Endogâmicos C57BL
6.
Reprod Biol ; 24(1): 100841, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38118268

RESUMO

Dysregulated thioredoxin-interacting protein (TXNIP) has been observed in women with gestational diabetes mellitus (GDM), but the specific role of TXNIP in GDM and the underlying mechanism remain unclear. HTR-8/SVneo cells were treated with high glucose to mimic the injured trophoblasts of GDM. In vitro, TXNIP knockdown was performed by siRNA. RTqPCR was performed to determine the expression of the corresponding genes. Cell proliferation and apoptosis were measured using CCK-8, EdU and Annexin V/PI assays. The autophagosome number was assessed using transmission electron microscopy. The expression of the autophagy substrate sequestosome 1 (P62) was evaluated by immunofluorescence. Autophagy-related proteins, including P62, light chain 3 (LC3)-I, and LC3-II, were analysed by Western blotting. HTR-8/Svneo cells treated with high glucose demonstrated reduced proliferation, increased apoptosis, decreased autophagosome formation and overall decreased autophagy. However, knockdown of TXNIP reversed the effects of HG on HTR-8/Svneo cells. However, the effect of TXNIP knockdown on HG-treated HTR-8/Svneo cells was inhibited by 3-methyladenine (3-MA) (widely used as an inhibitor of autophagy). We concluded that knockdown of TXNIP has the potential to enhance the activity of high glucose-treated human trophoblasts through autophagic activation, thereby improving pregnancy outcomes in patients with GDM.


Assuntos
Diabetes Gestacional , Gravidez , Humanos , Feminino , Diabetes Gestacional/metabolismo , Linhagem Celular , Trofoblastos/metabolismo , Apoptose , Autofagia , Proliferação de Células/genética , Glucose/farmacologia , Glucose/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
7.
Cell Transplant ; 32: 9636897231212746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38006220

RESUMO

Intrauterine adhesions (IUAs) often occurred after common obstetrical and gynecological procedures or infections in women of reproductive age. It was characterized by the formation of endometrial fibrosis and prevention of endometrial regeneration, usually with devastating fertility consequences and poor treatment outcomes so far. Telocytes (TCs), as a novel interstitial cell type, present in female uterus with in vitro therapeutic potential in decidualization-defective gynecologic diseases. This study aims to further investigate the role of TC-derived Wnt ligands carried by exosomes (Exo) in reversal of fibrosis and enhancement of regeneration repair in endometrium. IUA cellular and animal models were established from endometrial stromal cells (ESCs) and mice, followed with treatment of TC-conditioned medium (TCM) or TC-derived Exo. In cellular model, fibrosis markers (collagen type 1 alpha 1 [COL1A1], fibronectin [FN], and α-smooth muscle actin [α-SMA]), angiogenesis (vascular endothelial growth factor [VEGF]), and pathway protein (ß-catenin) were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting (WB), and immunofluorescence. Results showed that, TCs (either TCM or TC-derived Exo) provide a source of Wnts that inhibit cellular fibrosis, as evidenced by significantly elevated VEGF and ß-catenin with decreased fibrotic markers, whereas TCs lost salvage on fibrosis after being blocked with Wnt/ß-catenin inhibitors (XAV939 or ETC-159). Further in mouse model, regeneration repair (endometrial thickness, number of glands, and fibrosis area ratio), fibrosis markers (fibronectin [FN]), mesenchymal-epithelial transition (MET) (E-cadherin, N-cadherin), and angiogenesis (VEGF, microvessel density [MVD]) were studied by hematoxylin-eosin (HE), Masson staining, and immunohistochemistry. Results demonstrated that TC-Exo treatment effectively promotes regeneration repair of endometrium by relieving fibrosis, enhancing MET, and angiogenesis. These results confirmed new evidence for therapeutic perspective of TC-derived Exo in IUAs.


Assuntos
Exossomos , Telócitos , Doenças Uterinas , Humanos , Feminino , Camundongos , Animais , beta Catenina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fibronectinas/metabolismo , Exossomos/metabolismo , Endométrio/metabolismo , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Doenças Uterinas/terapia , Fibrose , Telócitos/metabolismo
8.
Microbiol Resour Announc ; 12(11): e0017223, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37815359

RESUMO

Mucilaginibacter gossypii P3, which was isolated from the sub-surface soil of the Zijin Gold and Copper Mine, displayed extremely high resistance to multiple heavy metal(loid)s and contained two novel ars operons. Complete genome sequencing of P3 yielded a single, closed genome of 7,187,928 bp, with GC content of 42.79%.

9.
Acta Histochem ; 125(8): 152099, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37813067

RESUMO

PURPOSE: Telocytes (TCs), a novel type of stromal cells found in tissues, induce macrophage differentiation into classically activated macrophages (M1) types and enhance their phagocytic function. The purpose of this study was to investigate the inhibitory effects of TC-induced M1 macrophages on endometriosis (EMs). METHODS: mouse uterine primary TCs and endometrial stromal cells (ESCs) were isolated and identified using double immunofluorescence staining. For the in vitro study, ESCs were treated with TC-induced M1 macrophages, and the vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and nuclear factor kappa B (NF-κb) genes were identified by quantitative real-time PCR (qRT-PCR) or western blotting (WB). For the in vivo study, an EMs mouse model received TC-conditioned medium (TCM) via abdominal administration, and characterized the inhibitory effects on growth (lesion weight, volume, and pathology), tissue-resident macrophages differentiation by immunostaining, angiogenic capacity (CD31 and VEGF), invasive capacity (MMP9), and NF-κb expression within EMs lesions. RESULTS: immunofluorescent staining showed that uterine TCs expressed CD34+ and vimentin+, whereas ESCs expressed vimentin+ and cytokeratin-. At the cellular level, TC-induced M1 macrophages can significantly inhibit the expression of VEGF and MMP9 in ESCs through WB or qRT-PCR, possibly by suppressing the NF-κb pathway. The in vivo study showed that macrophages switch from the alternatively activated macrophages (M2) in untreated EMs lesions to the M1 subtype after TCM exposure. Thereby, TC-induced M1 macrophages contributed to the inhibition of EMs lesions. More importantly, this effect may be achieved by suppressing the expression of NF-κb to inhibit angiogenesis (CD31 and VEGF) and invasion (MMP9) in the tissue. CONCLUSION: TC-induced M1 macrophages play a prevailing role in suppressing EMs by inhibiting angiogenic and invasive capacity through the NF-κb pathway, which provides a promising therapeutic approach for EMs.


Assuntos
Endometriose , Telócitos , Camundongos , Animais , Feminino , Humanos , NF-kappa B/metabolismo , Endometriose/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Metaloproteinase 9 da Matriz/genética , Vimentina/metabolismo , Transdução de Sinais , Macrófagos/metabolismo , Telócitos/metabolismo
12.
World J Gastroenterol ; 29(13): 2034-2049, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37155528

RESUMO

BACKGROUND: Sepsis exacerbates intestinal microecological disorders leading to poor prognosis. Proper modalities of nutritional support can improve nutrition, immunity, and intestinal microecology. AIM: To identify the optimal modality of early nutritional support for patients with sepsis from the perspective of intestinal microecology. METHODS: Thirty patients with sepsis admitted to the intensive care unit of the General Hospital of Ningxia Medical University, China, between 2019 and 2021 with indications for nutritional support, were randomly assigned to one of three different modalities of nutritional support for a total of 5 d: Total enteral nutrition (TEN group), total parenteral nutrition (TPN group), and supplemental parenteral nutrition (SPN group). Blood and stool specimens were collected before and after nutritional support, and changes in gut microbiota, short-chain fatty acids (SCFAs), and immune and nutritional indicators were detected and compared among the three groups. RESULTS: In comparison with before nutritional support, the three groups after nutritional support presented: (1) Differences in the gut bacteria (Enterococcus increased in the TEN group, Campylobacter decreased in the TPN group, and Dialister decreased in the SPN group; all P < 0.05); (2) different trends in SCFAs (the TEN group showed improvement except for Caproic acid, the TPN group showed improvement only for acetic and propionic acid, and the SPN group showed a decreasing trend); (3) significant improvement of the nutritional and immunological indicators in the TEN and SPN groups, while only immunoglobulin G improved in the TPN group (all P < 0.05); and (4) a significant correlation was found between the gut bacteria, SCFAs, and nutritional and immunological indicators (all P < 0.05). CONCLUSION: TEN is recommended as the preferred mode of early nutritional support in sepsis based on clinical nutritional and immunological indicators, as well as changes in intestinal microecology.


Assuntos
Apoio Nutricional , Sepse , Humanos , Nutrição Parenteral , Nutrição Parenteral Total , Nutrição Enteral , Sepse/terapia
13.
BMC Infect Dis ; 22(1): 899, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457066

RESUMO

BACKGROUND: Active tuberculosis (ATB) originates from primary Mycobacterium tuberculosis (MTB) infection or reactivation of latent tuberculosis. Besides bacteriological examination, MTB-reactive immunocytes detection can be an alternative testing for discrimination of active tuberculosis. The purpose of this study is to investigate the accuracy of peripheral blood CD27-CD38+IFN-γ+CD4+T cells in ATB diagnosis. METHODS: This prospective diagnostic accuracy study was conducted at Shanghai Pulmonary Hospital between January 2019 and December 2021. Patients with ATB, non-tuberculosis mycobacterium infection (NTM), latent tuberculosis infection (LTBI), other respiratory diseases (OD), and healthy individuals (HC) were enrolled. The accuracy of CD27-CD38+IFN-γ+CD4+/CD4+ and other phenotypic markers for ATB diagnosis was assessed. RESULTS: A total of 376 patients (237 ATB, 38 LTBI, 8 NTM, 50 OD, and 43 HC) were enrolled. The ratios of CD4+IFN-γ+CD27- and CD4+IFN-γ+CD27-CD38+ profiles in CD4+IFN-γ+ cells and the ratios of CD4+IFN-γ+CD38+, CD4+IFN-γ+CD27-, and CD4+IFN-γ+CD38+CD27- profiles in CD4+ cells in the ATB group were significantly higher than in the other groups. The area under the curve (AUC) of CD27-CD38+IFN-γ+CD4+/CD4+ for the diagnosis of ATB was the highest, with a value of 0.890. With the optimal cutoff value of 1.34 × 10-4, the sensitivity and specificity of CD27-CD38+IFN-γ+CD4+/CD4+ for ATB diagnosis was 0.869 and 0.849, respectively. CONCLUSION: CD27-CD38+IFN-γ+CD4+/CD4+ might be a potential biomarker for active tuberculosis diagnosis.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Humanos , Estudos Prospectivos , China , Interferon gama , Micobactérias não Tuberculosas , Linfócitos T CD4-Positivos
14.
Cell Transplant ; 31: 9636897221105252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35748420

RESUMO

Telocytes (TCs), a distinct type of interstitial (stromal) cells, have been discovered in many organs of human and mammal animals. TCs, which have unique morphological characteristics and abundant paracrine substance, construct a three-dimensional (3D) interstitial network within the stromal compartment by homocellular and heterocellular communications which are important for tissue homeostasis and normal development. Fibrosis-related diseases remain a common but challenging problem in the field of medicine with unclear pathogenesis and limited therapeutic options. Recently, increasing evidences suggest that where TCs are morphologically or numerically destructed, many diseases continuously develop, finally lead to irreversible interstitial fibrosis. It is not difficult to find that TCs are associated with chronic inflammation and fibrosis. This review mainly discusses relationship between TCs and the occurrence of fibrosis in various diseases. We analyzed in detail the potential roles and speculated mechanisms of TCs in onset and progression of systemic fibrosis diseases, as well as providing the most up-to-date research on the current therapeutic roles of TCs and involved related pathways. Only through continuous research and exploration in the future can we uncover its magic veil and provide strategies for treatment of fibrosis-related disease.


Assuntos
Telócitos , Animais , Fibrose , Homeostase , Inflamação/patologia , Mamíferos , Células Estromais , Telócitos/metabolismo
15.
Glob Chang Biol ; 28(18): 5505-5513, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35665575

RESUMO

Mounting observational records demonstrate human-caused faunal decline in recent decades, while accumulating archaeological evidence suggests an early biodiversity impact of human activities during the Holocene. A fundamental question arises concerning whether modern wildlife population declines began during early human disturbance. Here, we performed a population genomic analysis of six common forest birds in East Asia to address this question. For five of them, demographic history inference based on 25-33 genomes of each species revealed dramatic population declines by 4- to 48-fold over millennia (e.g. 2000-5000 thousand years ago). Nevertheless, summary statistics detected nonsignificant correlations between these population size trajectories and Holocene temperature variations, and ecological niche models explicitly predicted extensive range persistence during the Holocene, implying limited demographic consequence of Holocene climate change. Further analyses suggest high negative correlations between the reconstructed population declines and human disturbance intensities and indicate a potential driver of human activities. These findings provide a deep-time and large-scale insight into the recently recognized avifaunal decline and support an early origin hypothesis of human effects on biodiversity. Overall, our study sheds light on the current biodiversity crisis in the context of long-term human-environment interactions and offers a multi-evidential framework for quantitatively assessing the ecological consequences of human disturbance.


Assuntos
Aves , Mudança Climática , Animais , Biodiversidade , China , Florestas , Humanos
16.
Eur J Clin Pharmacol ; 78(7): 1069-1077, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35347342

RESUMO

BACKGROUND: The placebo effect in randomized controlled trials (RCTs) for East Asian patients with ulcerative colitis (UC) has been poorly characterized. This systematic review and meta-analysis aimed to determine the placebo rates of clinical and endoscopic remission in East Asian patients with UC and to identify factors that influenced placebo outcomes. METHODS: A comprehensive search was performed to identify all eligible RCTs. The placebo rates of clinical and endoscopic remission were pooled by random effects. Univariate meta-regression was performed to evaluate the influence of different factors on these placebo rates. RESULTS: Fourteen induction and seven maintenance RCTs were included, comprising 1781 East Asian patients with UC. The pooled placebo rates of clinical and endoscopic remission for induction trials were 13% (95% confidence interval [CI] 10-16%) and 26% (95% CI 21-32%), respectively. Corresponding values for maintenance trials were 15% (95% CI 10-23%) and 24% (95% CI 19-29%). Heterogeneity existed among the studies. On univariate meta-regression, the route of drug administration, outcome definition, disease severity, disease duration, distal disease and concomitant corticosteroids influenced the outcomes of placebo arms. CONCLUSIONS: The placebo rates of clinical and endoscopic remission in RCTs for East Asian patients with UC range from 13 to 26%, and are influenced by specific study characteristics. These results can inform the design and interpretation of future clinical trials in this region.


Assuntos
Colite Ulcerativa , Colite Ulcerativa/tratamento farmacológico , Humanos , Efeito Placebo , Indução de Remissão , Índice de Gravidade de Doença
17.
Environ Res ; 210: 112910, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35151659

RESUMO

The biorecovery of gold (Au) by microbial reduction has received increasing attention, however, the biomolecules involved and the mechanisms by which they operate to produce Au nanoparticles have been not resolved. Here we report that Burkholderia contaminans ZCC is capable of reduction of Au(III) to Au nanoparticles on the cell surface. Exposure of B. contaminans ZCC to Au(III) led to significant changes in the functional group of cell proteins, with approximately 11.1% of the (C-C/C-H) bonds being converted to CO (8.1%) and C-OH (3.0%) bonds and 29.4% of the CO bonds being converted to (C-OH/C-O-C/P-O-C) bonds, respectively. In response to Au(III), B. contaminans ZCC also displayed the ability of extracellular electron transfer (EET) via membrane proteins and could produce reduced riboflavin as verified by electrochemical and liquid chromatography-mass spectrometric results, but did not do so without Au(III) being present. Addition of exogenous reduced riboflavin to the medium suggested that B. contaminans ZCC could utilize indirect EET via riboflavin to enhance the rate of reduction of Au(III). Transcriptional analysis of the riboflavin genes (ribBDEFH) supported the view of the importance of riboflavin in the reduction of Au(III) and its importance in the biorecovery of gold.


Assuntos
Ouro , Nanopartículas Metálicas , Burkholderia , Elétrons , Riboflavina
18.
Neoplasma ; 69(6): 1386-1395, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36591801

RESUMO

Breast cancer (BC) is a prevalent neoplasm that occurs in women all over the world. Growth and differentiation factor 11 (GDF11) plays an essential role in cancer progression. This study focused on investigating the biological role and underlying mechanisms of GDF11 in BC. We detected the expression of GDF11 in 27 patients with BC and BC cell lines. Kaplan-Meier plotter was employed to analyze the relationship between GDF11 expression and overall survival (OS) of BC patients. The proliferative, migratory, invasive, and apoptotic abilities of T47D cells were examined. Correlation analysis of GDF11 with Smad ubiquitination regulatory factor 1 (SMURF1) was conducted. The association between GDF11 and the p53 pathway was analyzed by western blot and PFT-α (a p53 inhibitor)-mediated rescue assays. A brief analysis of the role of estrogen receptor alpha (ERα) signaling in BC progression was performed. The results showed that GDF11 was increased in BC tissues and cell lines, and the high expression of GDF11 was associated with the poor OS of BC patients. GDF11 knockdown inhibited the proliferation, migration, and invasion of T47D cells, but promoted cell apoptosis. Meanwhile, the GDF11 knockdown reduced the SMURF1 expression and invoked the p53 pathway activation. SMURF1 overexpression and PFT-α partially blocked the effects of GDF11 knockdown. In addition, GDF11 knockdown and SMURF1 silencing inhibited the activation of the ERα signaling pathway. In summary, GDF11 was involved in the progression of BC by regulating SMURF1-mediated p53 and ERα pathways, opening up a new way for BC treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo
19.
Chemosphere ; 291(Pt 1): 132712, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34715104

RESUMO

Strains of the genus Mucilaginibacter, belonging to the phylum Bacteroidetes, have been noted for exhibiting high genome plasticity and for the vigorous production of extracellular polymeric substances (EPS). Here we analyzed the composition and properties of EPS generated by M. rubeus P2, isolated from a gold-copper mine and exhibiting extremely high resistance to multiple heavy metals. Production of EPS increased significantly upon exposure to elevated concentrations of Cu(II) and Zn(II), but not Au(III). In addition, the EPS produced by M. rubeus P2 displayed extremely high bio-adsorption of As(III), Cu(II) and Au(III), but not of Zn(II). Moreover, EPS production in Mucilaginibacter rubeus P2 exposed to 1 mM of Cu(II) was 8.5 times higher than EPS production in the same strain without metal (loid)-exposure. These findings constitute the basis for a future use of these EPS-overproducing bacteria in bioremediation of heavy metal contaminated environments. The functional groups, especially -SH, CO, and N-H/C-N in the fingerprint zone of glutathione (GSH) and polysaccharides-like components of EPS, were the main components of EPS involved in both Zn(II) and Cu(II) binding and removal. Around 31.22% and 5.74% of Cu(II)-treated EPS was shown to exist as (CO) structures and these structures were converted into C-OH and O-C-O upon exposure to Cu(II), respectively. In contrast, (C-OH/C-O-C/P-O-C) groups in EPS were observed to be positively correlated to increasing concentrations of Zn(II) in strain P2. Furthermore, the complete genome of M. rubeus P2 helped us to identify 350 genes involved in carbohydrate metabolism, some of which are predicted to be involved in EPS production and modification. This work describes the first detailed biochemical and biophysical analysis of EPS from any strain of Mucilaginibacter with unique heavy metal binding properties. The results will be useful for a better understanding of how microorganisms such as M. rubeus P2 adapt to heavy metal polluted environments and how this knowledge can potentially be harnessed in biotechnological applications such as industrial waste water purification, bioremediation of heavy metal contaminated soil and beneficial plant microbe interactions. The toolbox provided in this paper will provide a valuable basis for future studies.


Assuntos
Metais Pesados , Zinco , Adsorção , Bacteroidetes , Cobre
20.
World J Gastrointest Oncol ; 13(11): 1741-1754, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34853647

RESUMO

BACKGROUND: Spasmolytic polypeptide-expressing metaplasia (SPEM) is a potential preneoplastic lesion. AIM: To elucidate the microRNA (miR)-7-mediated preventive and inhibitive effects of Yiwei Xiaoyu granules (YWXY) in SPEM lesions. METHODS: Gastric mucosa biopsies were collected from chronic atrophic gastritis patients and healthy people with signed informed consent. YWXY was administered to the mice with induced SPEM by tamoxifen, and the gastric mucosa was harvested on the tenth day of the experiment. Then immunohistochemistry and immunofluorescence were performed to validate the SPEM, lesions and the potential mechanism was investigated. RNA transcripts were detected with reverse transcription-quantitative polymerase chain reaction. RESULTS: The expression of miR-7 was downregulated in the SPEM lesions, and expression of trefoil factor 2 (TFF2) and clusterin was high in the human gastric mucosa. In vivo experiments showed that YWXY could inhibit the cell proliferation in the tamoxifen-induced SPEM lesions by regulating Ki67. Simultaneously, YWXY could restore the expression of miR-7 by regulating TFF2 by detection with immunofluorescence but not with reverse transcription-quantitative polymerase chain reaction, indicating its potential mechanism of targeting miR-7 by mediating TFF2. The expression of vascular endothelial growth factor-ß and gastric intrinsic factor was restored within 3 d of YWXY administration for the SPEM lesions, speculating that the possible mechanism of YWXY is to inhibit the development and progression of SPEM by regulating vascular endothelial growth factor-ß and gastric intrinsic factor. CONCLUSION: miR-7 downregulation is an early event in SPEM through regulation of TFF2 in human gastric mucosa. YWXY is able to inhibit the cell proliferation and restore the expression of miR-7 by mediating TFF2 in the SPEM mouse model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...